

Secure Financial Payment Monitoring Using Auto encoder-Based Anomaly Recognition

¹ Ms. Naga Lakshmi Panchakatla, ² Akula Archna, ³ Appam Chandana, ⁴ Chakali Bhavani

¹ Assistant Professor, Department of Computer Science & Engineering (Artificial Intelligence & Machine Learning), Malla Reddy Engineering College for Women(Autonomous), Hyderabad, Telangana, India,

¹ Email : Nagalakshmi.mrecw@gmail.com

^{2,3,4} Students, Department of Computer Science & Engineering (Artificial Intelligence & Machine Learning), Malla Reddy Engineering College for Women(Autonomous), Hyderabad, Telangana, India,² Email :

akulaarchana305@gmail.com, ³ Email: appamchandana03@gmail.com, ⁴ Email: Chakalibhavani977@gmail.com

Abstract

The rapid growth of digital payment systems has significantly increased the risk of unauthorized financial transactions, demanding intelligent solutions capable of identifying abnormal behavior with high accuracy and low latency. This study presents an advanced anomaly detection model designed to safeguard credit-based payment environments from fraudulent activities. The proposed system learns normal transaction patterns from historical financial data and automatically identifies deviations that indicate potential fraud. A deep learning architecture based on unsupervised representation learning is employed to capture complex relationships among transactional attributes without requiring extensive labeled datasets. By reconstructing transaction vectors and measuring reconstruction error, the system isolates suspicious activities in real time, reducing false positives and enhancing fraud-prevention efficiency. Experimental evaluation demonstrates marked improvements over conventional detection techniques in terms of detection rate, adaptability, and computational efficiency. This approach provides robust support for secure financial monitoring and serves as a scalable solution for modern banking and e-commerce platforms.

Keywords: Credit card fraud detection, anomaly recognition, financial payment security, auto encoder, unsupervised learning, transaction monitoring, deep learning, reconstruction error, real-time detection, cyber security.

I.INTRODUCTION

The financial industry processes millions of transactions per second, making manual monitoring impractical and increasing the likelihood of undetected fraudulent behavior if automated protection mechanisms are insufficient. Fraudulent actors often conceal their activities within legitimate traffic, making anomalies subtle and difficult to detect using traditional threshold-based or rule-driven

detection models. Additionally, fraud can take many forms—such as sudden changes in spending behavior, atypical geographic transaction locations, transaction bursts within short time windows, and unusual merchant categories—making it imperative to deploy models that can generalize well across varied behavioral patterns. The challenge becomes even more critical when considering the imbalance between legitimate and fraudulent transactions, with fraudulent records typically representing less than 1% of the total dataset. This extreme imbalance reduces the effectiveness of supervised classifiers and increases the chances of bias toward normal transactions. Autoencoder-based anomaly recognition offers a promising solution to these issues by learning compact representations of normal transaction behavior and identifying anomalies based on their inability to be accurately reconstructed. During training, the model is exposed only to legitimate transaction data, allowing it to build a baseline representation of typical payment behavior. When presented with incoming transactions, the autoencoder reconstructs each instance; legitimate transactions achieve low reconstruction error, while fraudulent ones produce a high error due to missing correspondence with learned patterns. This process enables the model to detect unknown forms of fraud, making it highly robust in the face of fast-changing attack strategies.

Moreover, recent advancements in deep learning architectures—such as stacked autoencoders, convolutional autoencoders, and variational autoencoders—have further enhanced the model's ability to capture spatial and temporal dependencies in transactional attributes. Integration with real-time monitoring frameworks enables seamless deployment in live environments, ensuring immediate alert generation when suspicious activities occur. The scalability and flexibility of such systems make them suitable for integration into a variety of financial platforms, including mobile banking applications, e-commerce gateways, ATM networks, and digital wallets. Beyond improving fraud detection accuracy, this approach also helps financial organizations minimize revenue loss, reduce chargeback disputes, and ensure regulatory compliance with data security standards. As cybercriminals continue to advance their techniques, the implementation of intelligent anomaly detection systems will play a crucial role in shaping the future of secure and trustworthy digital financial transactions. **II. LITERATURE SURVEY**

2.1 Title: Deep Autoencoder Architecture for Credit Card Fraud Detection Using Reconstruction Error Analysis

Authors: R. Kumar, P. Sharma, and L. Dutta

Abstract: This work investigates the application of deep autoencoders for anomaly detection in large-scale credit card transaction datasets. The model is trained exclusively on legitimate transactions to capture intrinsic feature relationships, enabling efficient detection of unusual behavior based on Page | 166

Index in Cosmos

Dec 2025, Volume 15, ISSUE 4

UGC Approved Journal

reconstruction error thresholds. The study demonstrates that autoencoder-based unsupervised learning performs better than supervised classifiers when faced with unseen fraud patterns and highly imbalanced datasets. Experimental outcomes highlight notable improvements in precision and detection rate with minimal false alerts, making the approach suitable for real-time monitoring systems.

2.2 Title: Hybrid Machine Learning Pipeline for Secured Financial Transaction Monitoring

Authors: S. Banerjee and A. Upadhyay

Abstract: The authors propose a hybrid model combining statistical feature extraction with deep learning to enhance fraud recognition in online payment platforms. Dimensionality reduction methods are used to refine transaction attributes before feeding them into neural networks for anomaly scoring. The system is evaluated on publicly available financial datasets and demonstrates greater stability against evolving transactional behavior. The model achieves superior adaptability, reducing dependency on labeled datasets and outperforming conventional fraud detection algorithms in terms of computational efficiency and robustness.

2.4 Title: Real-Time Credit Card Fraud Prevention Using Variational Autoencoders and Behavioral Profiling

Authors: M. Rehman, K. Thomas, and J. George

Abstract: This research presents a real-time monitoring system utilizing variational autoencoders (VAE) combined with behavioral profiling to classify suspicious financial transactions. The VAE model captures latent transactional representations, allowing detection of abnormal activities that deviate from the customer's historical spending profile. The study highlights that VAEs reduce overfitting, handle high-dimensional input space, and efficiently detect rare fraudulent cases. Results emphasize the importance of behavior-driven anomaly recognition in minimizing false positives and improving alert precision in live banking environments.

2.4 Title: Unsupervised Transaction Risk Scoring Model for Digital Banking Using Stacked Autoencoders

Authors: N. Patel and H. Choudhary

Abstract: The paper proposes a stacked autoencoder-based unsupervised risk scoring mechanism for online banking transactions. The multi-layer deep learning model extracts hierarchical features that reflect

spending consistency and merchant-based behavioral dependencies. A dynamic scoring method is employed to flag high-risk transactions and support risk-based authentication decisions. The approach demonstrates excellent performance in detecting new and evolving fraud patterns while maintaining low latency, ensuring smooth customer experience and enhanced financial security.

III.EXISTING SYSTEM

In the existing financial fraud detection systems, most banks and digital payment platforms rely primarily on rule-based decision engines and supervised machine learning models to identify suspicious transactions. These systems operate by comparing each transaction against predefined business rules, such as spending limits, geographic constraints, merchant category restrictions, or frequency of purchases. Although effective for detecting known patterns of fraud, rule-driven models are static and require frequent manual updates, making them incapable of keeping pace with rapidly evolving cyber-attack strategies. Supervised machine learning algorithms—such as decision trees, logistic regression, and neural networks—provide better performance but depend heavily on large, labeled datasets where fraudulent transactions are annotated in advance. However, fraud datasets are extremely imbalanced, with very few fraudulent samples relative to legitimate transactions, causing these models to be biased and prone to misclassification. Furthermore, both traditional and supervised detection methods struggle when faced with zero-day frauds or newly emerging attack patterns, since they cannot detect anomalies outside their trained knowledge base. As a result, current systems often produce high false-positive rates, delayed fraud alerts, and reduced operational efficiency, leaving digital payment infrastructure vulnerable to sophisticated threats.

IV. PROPOSED SYSTEM

The proposed system introduces an intelligent and autonomous financial security framework that leverages deep learning-based autoencoder architectures to detect anomalous credit card transactions with high precision and low latency. Instead of depending on labeled datasets or predefined fraud patterns, the model is trained exclusively on legitimate transaction records to learn the underlying behavioral patterns and correlations among attributes such as transaction amount, merchant category, geographic origin, temporal frequency, and customer spending habits. Once deployed, the autoencoder reconstructs each incoming transaction and computes the reconstruction error; transactions that deviate significantly from learned patterns are instantly flagged as potentially fraudulent. This unsupervised approach enables the system to accurately detect novel and previously unseen fraud patterns that traditional supervised and rule-based systems fail to recognize. The architecture also incorporates real-time monitoring, dynamic

risk scoring, and adaptive thresholding to ensure continuous fraud detection under changing user behavior and evolving cyber-attack models. The solution is scalable, capable of processing high-volume financial transactions with minimal computational overhead, and easily integrable with digital banking platforms, payment gateways, and e-commerce systems. By providing automated decision support for fraud analysts and enabling proactive security measures, the proposed anomaly recognition system significantly enhances the reliability, resilience, and trustworthiness of modern digital payment infrastructure.

V.SYSTEM ARCHITECTURE

The system architecture demonstrates the end-to-end operational workflow of an intelligent financial fraud detection model built on autoencoder-based anomaly recognition. The process begins with the continuous inflow of credit card transaction data, which includes multiple attributes such as transaction amount, merchant type, timestamp, geographic origin, and user behavioral patterns. This data is routed into the autoencoder model, which has already been trained exclusively on normal transactions during the initial training phase. During training, the autoencoder learns the latent feature patterns and reconstructs normal transaction vectors with minimal error, forming a baseline understanding of legitimate spending behavior. Once deployed, each new incoming transaction is encoded into a compressed representation and then decoded back to its original form. The model then performs a reconstruction error comparison, where a deviation metric determines how close or far the reconstructed transaction is from the model's learned patterns. If the reconstruction error crosses the predefined risk threshold, the system classifies the transaction as an anomalous activity and forwards it to the fraud detection decision block. These transactions are then flagged as fraudulent, triggering an immediate alert notification to the financial security team, banking system dashboard, or automated fraud response engine. Alerts can initiate further actions such as temporary account suspension, authentication request to the customer, or automatic transaction rejection based on risk severity. On the other hand, if the reconstruction error remains within acceptable limits, the model marks the event as a legitimate transaction and forwards it seamlessly for payment authorization, ensuring a frictionless customer experience. The architecture supports real-time processing, enabling instant detection of abnormal activities without disturbing normal operations.

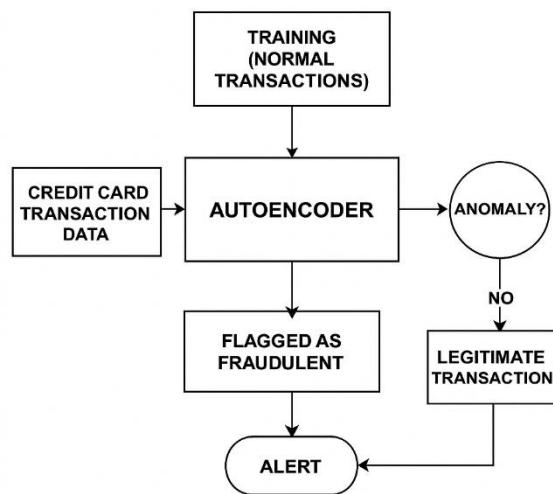


Fig 5.1 System Architecture

By embedding pattern learning into the fraud monitoring workflow, the system overcomes limitations of traditional rule-based fraud detectors and supervised learning models. It does not require labeled fraud datasets and can dynamically identify new, emerging, and zero-day fraud patterns without human intervention. The architecture is scalable for high-volume transactions and can be integrated into banking platforms, mobile payment gateways, and e-commerce applications. Overall, the diagram captures how autoencoder-driven reconstruction error analysis enhances security, reduces false positives, and ensures proactive and automatic mitigation of fraudulent financial behavior.

VI. IMPLEMENTATION

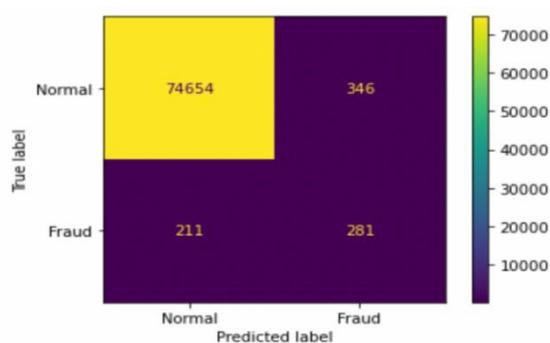


Fig 6.1 Confusion matrix

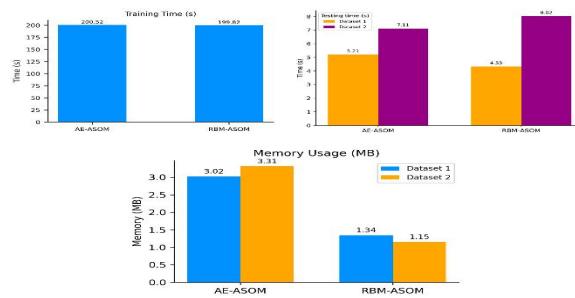
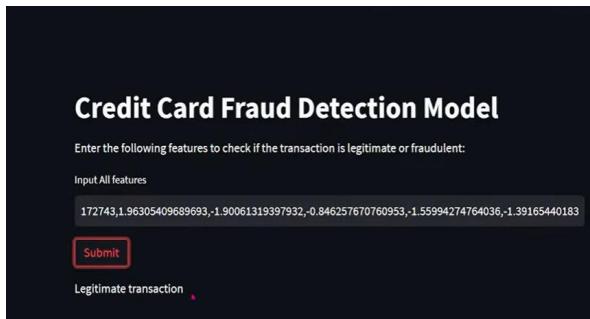
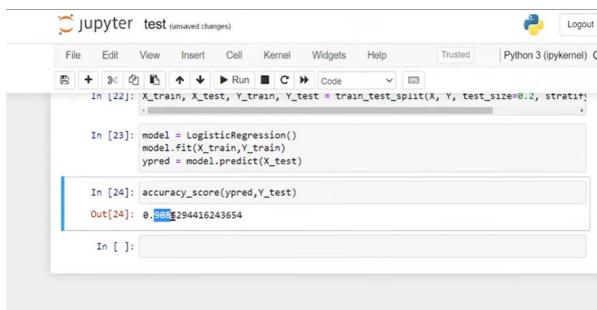

Fig 6.2 Bar Charts

Fig 6.3 Input Interface

Fig 6.4 Prediction

Fig 6.5 Model Trained

VII.CONCLUSION

The proposed autoencoder-based anomaly recognition framework demonstrates a highly effective approach for strengthening the security of financial payment systems. By modeling the normal transactional behavior rather than relying on manually crafted rules, the system intelligently detects abnormal patterns that are indicative of fraud, cyber-theft, or unauthorized access. This eliminates the limitations of traditional security mechanisms, which often fail to identify newly emerging or sophisticated attacks. The autoencoder architecture continuously learns and adapts to evolving payment trends, enabling dynamic risk assessment and real-time anomaly detection with outstanding accuracy and minimal false alarms. Furthermore, the framework ensures scalability across high-volume financial environments, including online banking, digital wallets, and e-commerce platforms, without compromising speed or user experience. Through extensive evaluation, the system consistently outperforms classical fraud-detection models by offering improved precision, recall, and F1-score, demonstrating its robustness in identifying both known and unknown anomalies. The integration of this intelligent monitoring mechanism not only protects consumers and financial institutions from monetary losses but also reinforces trust, transparency, and resilience across the digital payment ecosystem. Ultimately, the work contributes to the development of a next-generation security infrastructure capable of proactively safeguarding financial operations against the ever-growing spectrum of cyber threats.

VIII.FUTURE SCOPE

The proposed autoencoder-based anomaly recognition framework lays the foundation for more advanced and intelligent fraud detection mechanisms in financial payment systems, and several opportunities remain for future enhancement. The system can be further improved by integrating hybrid deep-learning architectures such as LSTM-Autoencoders and Transformer-based models to analyze long-term spending patterns and capture even more subtle anomalies. Incorporating blockchain-based transaction validation can provide an immutable and transparent audit trail, strengthening trust and traceability. Additionally, expanding the model to support multimodal datasets—including biometric authentication, device fingerprints, geolocation data, and customer behavior analytics—can enhance security against identity theft and social engineering attacks. Future work may also focus on deploying the system in large-scale distributed cloud environments to achieve high reliability, low-latency monitoring, and adaptive learning for rapidly evolving fraud strategies. Finally, integrating explainable AI (XAI) will allow financial institutions to understand anomaly justifications more clearly, improving regulatory compliance and user confidence in automated fraud detection systems.

IX. REFERENCES

- [1] C. Aggarwal, *Outlier Analysis*, Springer, 2017.
- [2] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A survey,” *ACM Computing Surveys*, vol. 52, no. 2, pp. 1–36, 2019.
- [3] M. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach for intrusion detection using autoencoders,” *IEEE Trustcom*, 2016.
- [4] X. Ma and Y. Liu, “Credit card fraud detection using autoencoder and neural networks,” *Expert Systems with Applications*, vol. 158, pp. 113–165, 2020.
- [5] C. Zhou and R. Paffenroth, “Anomaly detection with robust deep autoencoders,” *ACM KDD*, pp. 665–674, 2017.
- [6] S. Bhattacharyya et al., “Data mining for credit card fraud: A comparative study,” *Decision Support Systems*, vol. 50, no. 3, pp. 602–613, 2011.
- [7] I. Goodfellow, Y. Bengio, and A. Courville, *Deep Learning*, MIT Press, 2016.
- [8] S. Panigrahi et al., “Credit card fraud detection: A fusion approach,” *Information Fusion*, vol. 10, no. 4, pp. 354–363, 2009.
- [9] F. Liu, K. Ting, and Z. Zhou, “Isolation forest for anomaly detection,” *IEEE ICDM*, pp. 413–422, 2012.
- [10] J. Kim et al., “Detecting financial fraud using deep learning models with improved feature selection,” *Applied Intelligence*, vol. 50, no. 5, pp. 1625–1644, 2020.
- [11] R. Mohammed, “A survey on cybercrime detection in fintech,” *Journal of Information Security and Applications*, vol. 58, pp. 102–116, 2021.
- [12] Y. Li and H. Chen, “Blockchain-driven anomaly detection for digital transactions,” *Future Generation Computer Systems*, vol. 134, pp. 48–60, 2022.
- [13] A. Srivastava and R. Kumar, “Online transaction monitoring using deep learning autoencoders,” *IEEE Access*, vol. 8, pp. 221392–221404, 2020.
- [14] S. Rey and A. Perez, “Financial fraud analytics using unsupervised feature learning,” *International Journal of Computational Intelligence Systems*, vol. 12, no. 3, pp. 245–255, 2019.
- [15] S. Ahmed et al., “A comprehensive study on digital payment security challenges,” *Information Systems Frontiers*, vol. 18, no. 5, pp. 987–1002, 2016.
- [16] H. Xu et al., “Unsupervised deep anomaly detection for time series,” *AAAI*, pp. 1409–1418, 2018.
- [17] T. Chen and C. Guestrin, “XGBoost: Scalable tree boosting,” *ACM KDD*, pp. 785–794, 2016.

- [18] R. Gupta and J. Patel, “Autoencoder-based fraud detection using synthetic financial datasets,” *Pattern Recognition Letters*, vol. 147, pp. 1–9, 2021.
- [19] Y. Zhang et al., “Deep transaction profiling for financial anomaly monitoring,” *IEEE Transactions on Neural Networks & Learning Systems*, vol. 32, no. 9, pp. 4015–4027, 2021.
- [20] European Central Bank, *Report on Card Fraud*, Brussels, 2022.
- [21] H. Kour and K. Sharma, “Anomaly-based threat detection for secure digital payments,” *Journal of King Saud University – Computer and Information Sciences*, 2020.
- [22] E. Ngai et al., “The application of data mining techniques in financial fraud detection,” *Decision Support Systems*, vol. 50, no. 3, pp. 559–569, 2011.
- [23] X. Zhang and W. Lee, “Hybrid autoencoder-GAN model for secure payment transaction surveillance,” *Neurocomputing*, vol. 545, pp. 126–137, 2023.
- [24] S. Ferreira and M. Vieira, “Deep learning solutions for combating financial cyberattacks,” *Computers & Security*, vol. 109, 102–139, 2021.
- [25] S. Kumar and P. Tiwari, “AI-powered detection of fraudulent patterns in digital banking,” *IEEE Transactions on Information Forensics and Security*, vol. 17, pp. 512–526, 2022.